A359020 Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.
1, 1, 4, 6, 13, 39, 115, 295, 861, 2403, 7048, 20377, 60008, 175978, 519589, 1532455, 4531277, 13395656, 39639758, 117301153, 347248981, 1028011708, 3043852214, 9012879842, 26689014028, 79033362580, 234045889421, 693101137571, 2052569508948
Offset: 0
Keywords
Examples
a(3) is 6 because of: +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ | | | | | | | | | | | | | | | | | | | +-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+ | | | | | | | | | | | | | | | | | | +-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+ | | | | | | | | | | | | | | | | | | | +-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+ | | | | | | | | | | | | | | | | | | | | +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Links
- John Mason, Table of n, a(n) for n = 0..1000
- John Mason, Counting free tilings of a rectangle
Crossrefs
Formula
For even n > 4
2 * Sum_{k=0..(n - 2) / 2} (A054856(k))) / 4
For odd n > 4
Where compo(n) is the number of distinct compositions of n as a sum of 1, 2, (1+1) and 4.