A359021 Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.
1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0
Keywords
Examples
a(2) is 5 because of: +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ | | | | | | | | | | | +-+-+ +-+-+ + + + + +-+-+ | | | | | | | | | | | +-+-+ + + +-+-+ +-+-+ + + | | | | | | | | | | | | +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ | | | | | | | | | | | | | +-+-+ + + + + +-+-+ +-+-+ | | | | | | | | | | | | | +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
Links
- John Mason, Table of n, a(n) for n = 0..1000
- John Mason, Counting tilings of width 5 rectangles
Crossrefs
Formula
For even n > 5:
a(n) = (A054857(n) + A079975(n) + 2*A054857(n/2) + 2* fixed_md(n/2) + 2*A054857((n-4)/2) + 4*A054857((n-2)/2) + 2* (A054857((n/2)-1) + fixed_md((n/2)-1)))/4.
For odd n > 5:
a(n) = (A054857(n) + A079975(n) + 2*A054857((n-1)/2) + 4*A054857((n-3)/2) + 2*fixed_md((n-3)/2) + 2*A054857((n-5)/2) + 2*fixed_md((n-1)/2))/4.
where