cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359021 Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Examples

			a(2) is 5 because of:
  +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
  | | | |   | |   | |   | |   |
  +-+-+ +-+-+ +   + +   + +-+-+
  | | | |   | |   | |   | |   |
  +-+-+ +   + +-+-+ +-+-+ +   +
  | | | |   | |   | | | | |   |
  +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
  | | | |   | |   | | | | | | |
  +-+-+ +   + +   + +-+-+ +-+-+
  | | | |   | |   | | | | | | |
  +-+-+ +-+-+ +-+-+ +-+-+ +-+-+
		

Crossrefs

Column k = 5 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
Cf. A079975.

Formula

For even n > 5:
a(n) = (A054857(n) + A079975(n) + 2*A054857(n/2) + 2* fixed_md(n/2) + 2*A054857((n-4)/2) + 4*A054857((n-2)/2) + 2* (A054857((n/2)-1) + fixed_md((n/2)-1)))/4.
For odd n > 5:
a(n) = (A054857(n) + A079975(n) + 2*A054857((n-1)/2) + 4*A054857((n-3)/2) + 2*fixed_md((n-3)/2) + 2*A054857((n-5)/2) + 2*fixed_md((n-1)/2))/4.
where
fixed_md(1)=1, fixed_md(2)=3, fixed_md(3)=15 and for n > 3, fixed_md(n) = A054857(n-1) + A054857(n-2) + fixed_md(n-2)+ fixed_md(n-1) + 2*A054857(n-3) + fixed_md(n-3).