A359030 Positive numbers that are the sum of cubes of three distinct integers in arithmetic progression.
9, 27, 36, 57, 72, 99, 132, 153, 216, 219, 243, 288, 297, 324, 369, 387, 405, 408, 456, 489, 495, 531, 576, 603, 612, 645, 684, 729, 792, 855, 867, 963, 972, 996, 1017, 1056, 1071, 1125, 1179, 1197, 1224, 1233, 1353, 1368, 1407, 1455, 1476, 1539, 1548, 1584, 1701, 1728, 1737, 1752, 1845, 1881
Offset: 1
Keywords
Examples
a(4) = 57 is a term because 57 = (-2)^3 + 1^3 + 4^3 where (-2, 1, 3) are in arithmetic progression.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 2000: # for terms <= N L:= NULL: for a from 1 while 3*a^3 <= N do for b from 1 do x:= 3*a*(a^2 + 2*b^2); if x > N then break fi; L:= L,x od od: sort(convert({L},list));
Comments