This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359031 #21 Dec 23 2024 14:53:46 %S A359031 0,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,2,2,3,2,4,2,5,2,6,2,7,2,8,2, %T A359031 9,2,10,3,3,4,3,5,3,6,3,7,3,8,3,9,3,10,4,4,5,4,6,4,7,4,8,4,9,4,10,5,5, %U A359031 6,5,7,5,8,5,9,5,10,6,6,7,6,8,6,9,6,10,7,7,8,7,9,7,10 %N A359031 a(n+1) gives the number of occurrences of the mode of the digits of a(n) among all the digits of [a(0), a(1), ..., a(n)], with a(0)=0. %C A359031 The mode is the most frequently occurring value among the digits of a(n). When there are multiple values occurring equally frequently, the mode is the smallest of those values. %C A359031 Up to a(464)=110, the terms are identical to A358967. %H A359031 Bence BernĂ¡th, <a href="/A359031/b359031.txt">Table of n, a(n) for n = 0..20000</a> %H A359031 Eric Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/pipermail/seqfan/2014-October/013784.html">Digit-counters updating themselves</a> %o A359031 (MATLAB) %o A359031 length_seq=470; %o A359031 sequence(1)=0; %o A359031 seq_for_digits=(num2str(sequence(1))-'0'); %o A359031 for i1=1:1:length_seq %o A359031 sequence(i1+1)=sum(seq_for_digits==mode((num2str(sequence(i1))-'0'))'); %o A359031 seq_for_digits=[seq_for_digits, num2str(sequence(i1+1))-'0']; %o A359031 end %o A359031 (Python) %o A359031 import statistics as stat %o A359031 sequence=[0] %o A359031 length=470 %o A359031 seq_for_digits=list(map(int, list(str(sequence[0])))) %o A359031 for ii in range(length): %o A359031 sequence.append(seq_for_digits.count(stat.mode(list(map(int, list(str(sequence[-1]))))))) %o A359031 seq_for_digits.extend(list(map(int, list(str(sequence[-1]))))) %Y A359031 Cf. A248034, A249009, A356348, A336514, A358967, A358851, A322182. %K A359031 nonn,base,look %O A359031 0,4 %A A359031 _Bence BernĂ¡th_, Dec 12 2022