This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359038 #24 Dec 14 2022 09:08:36 %S A359038 1,9,9,24,9,81,9,46,24,81,9,216,9,81,81,75,9,216,9,216,81,81,9,414,24, %T A359038 81,46,216,9,729,9,111,81,81,81,576,9,81,81,414,9,729,9,216,216,81,9, %U A359038 675,24,216,81,216,9,414,81,414,81,81,9,1944,9,81,216,154,81,729,9,216,81,729,9 %N A359038 a(n) = Sum_{d|n} tau(d^7), where tau(n) = number of divisors of n, cf. A000005. %F A359038 a(n) = Sum_{d|n} tau(n * d^5) = Sum_{d|n} tau(n^2 * d^3) = Sum_{d|n} tau(n^3 * d) = Sum_{d|n} tau(n^4 / d). %F A359038 G.f.: Sum_{k>=1} tau(k^7) * x^k/(1 - x^k). %F A359038 Multiplicative with a(p^e) = 7*e^2/2 + 9*e/2 + 1. - _Amiram Eldar_, Dec 14 2022 %t A359038 Array[DivisorSum[#, DivisorSigma[0, #^7] &] &, 120] (* _Michael De Vlieger_, Dec 13 2022 *) %t A359038 f[p_, e_] := 7*e^2/2 + 9*e/2 + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 14 2022 *) %o A359038 (PARI) a(n) = sumdiv(n, d, numdiv(d^7)); %o A359038 (PARI) a(n) = sumdiv(n, d, numdiv(n*d^5)); %o A359038 (PARI) a(n) = sumdiv(n, d, numdiv(n^2*d^3)); %o A359038 (PARI) a(n) = sumdiv(n, d, numdiv(n^3*d)); %o A359038 (PARI) a(n) = sumdiv(n, d, numdiv(n^4/d)); %o A359038 (PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^7)*x^k/(1-x^k))) %o A359038 (Python) %o A359038 from math import prod %o A359038 from sympy import factorint %o A359038 def A359038(n): return prod((e+1)*(7*e+2)>>1 for e in factorint(n).values()) # _Chai Wah Wu_, Dec 13 2022 %Y A359038 Cf. A000005, A007425, A035116, A061391, A356574, A358380, A359037. %Y A359038 Cf. A321348. %K A359038 nonn,mult,easy %O A359038 1,2 %A A359038 _Seiichi Manyama_, Dec 13 2022