cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359041 Number of finite sets of integer partitions with all equal sums and total sum n.

This page as a plain text file.
%I A359041 #10 Dec 14 2022 10:56:13
%S A359041 1,1,2,3,6,7,14,15,32,31,63,56,142,101,240,211,467,297,985,490,1524,
%T A359041 1247,2542,1255,6371,1979,7486,7070,14128,4565,32953,6842,42229,37863,
%U A359041 56266,17887,192914,21637,145820,197835,371853,44583,772740,63261,943966,1124840
%N A359041 Number of finite sets of integer partitions with all equal sums and total sum n.
%F A359041 a(n) = Sum_{d|n} binomial(A000041(d),n/d).
%e A359041 The a(1) = 1 through a(6) = 14 sets:
%e A359041   {(1)}  {(2)}   {(3)}    {(4)}       {(5)}      {(6)}
%e A359041          {(11)}  {(21)}   {(22)}      {(32)}     {(33)}
%e A359041                  {(111)}  {(31)}      {(41)}     {(42)}
%e A359041                           {(211)}     {(221)}    {(51)}
%e A359041                           {(1111)}    {(311)}    {(222)}
%e A359041                           {(2),(11)}  {(2111)}   {(321)}
%e A359041                                       {(11111)}  {(411)}
%e A359041                                                  {(2211)}
%e A359041                                                  {(3111)}
%e A359041                                                  {(21111)}
%e A359041                                                  {(111111)}
%e A359041                                                  {(3),(21)}
%e A359041                                                  {(3),(111)}
%e A359041                                                  {(21),(111)}
%t A359041 Table[If[n==0,1,Sum[Binomial[PartitionsP[d],n/d],{d,Divisors[n]}]],{n,0,50}]
%o A359041 (PARI) a(n) = if (n, sumdiv(n, d, binomial(numbpart(d), n/d)), 1); \\ _Michel Marcus_, Dec 14 2022
%Y A359041 This is the constant-sum case of A261049, ordered A358906.
%Y A359041 The version for all different sums is A271619, ordered A336342.
%Y A359041 Allowing repetition gives A305551, ordered A279787.
%Y A359041 The version for compositions instead of partitions is A358904.
%Y A359041 A001970 counts multisets of partitions.
%Y A359041 A034691 counts multisets of compositions, ordered A133494.
%Y A359041 A098407 counts sets of compositions, ordered A358907.
%Y A359041 Cf. A000005, A000041, A038041, A055887, A063834, A074854, A289078, A304961, A305552, A306017.
%K A359041 nonn
%O A359041 0,3
%A A359041 _Gus Wiseman_, Dec 14 2022