cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359044 Primes p such that primepi(p)-1 divides p-1.

This page as a plain text file.
%I A359044 #9 Dec 14 2022 11:23:21
%S A359044 3,5,7,31,97,101,331,1009,1093,1117,1123,1129,3067,64621,480853,
%T A359044 481009,481021,481093,481297,481417,3524431,9558361,9559591,9560041,
%U A359044 9560071,189961939,189962011,189962137,189962623,189963271,189963901,189968923,514273609,514274027
%N A359044 Primes p such that primepi(p)-1 divides p-1.
%F A359044 a(n) = prime(A105286(n)+1).
%e A359044 prime(11) = 31 and 11-1 divides 31-1, so 31 is a term.
%o A359044 (Python)
%o A359044 from itertools import count, islice
%o A359044 from sympy import prime
%o A359044 def A359044_gen(): # generator of terms
%o A359044     for i in count(2):
%o A359044         if not ((p:=prime(i))-1) % (i-1):
%o A359044             yield p
%o A359044 A359044_list = list(islice(A359044_gen(),10))
%Y A359044 Cf. A105286.
%K A359044 nonn
%O A359044 1,1
%A A359044 _Chai Wah Wu_, Dec 14 2022