A359055 Numbers that can be represented in more than one way as the sum of cubes of three distinct positive numbers in arithmetic progression.
5643, 12384, 31977, 45144, 99072, 123849, 152361, 153792, 255816, 259776, 269739, 274968, 334368, 361152, 477576, 500445, 705375, 792576, 863379, 912339, 928017, 950931, 990792, 1090584, 1218888, 1230336, 1548000, 1629144, 1700424, 1737252, 1799523, 1813512, 1935549, 1941192, 2046528, 2078208
Offset: 1
Keywords
Examples
a(1) = 5643 is a term because 5643 = 1^3 + (1+8)^3 + (1+2*8)^3 = 6^3 + (6+5)^3 + (6+2*5)^3.
Links
- Robert Israel, Table of n, a(n) for n = 1..2500
- R. Israel et al, Sum of cubes of three positive integers in arithmetic progression in four ways?, Mathematics StackExchange, Dec. 2022.
Crossrefs
Cf. A306213.
Programs
-
Maple
N:= 10^7: # to get terms <= N S:= {}: S2:= {}: for a from 1 while a^3 + (a+1)^3 + (a+2)^3 <= N do for d from 1 do x:= a^3 + (a+d)^3 + (a+2*d)^3; if x > N then break fi; if member(x,S) then S2:= S2 union {x} fi; S:= S union {x} od od: sort(convert(S,list));
Comments