A359065 Lexicographically earliest sequence of distinct positive composite integers such that no subsequence sums to a prime and in which all terms are coprime.
4, 21, 65, 209, 391, 3149, 9991, 368131, 57556589, 14865154981
Offset: 1
Programs
-
Mathematica
k = 4; K = {k}; f = {2}; q = Subsets[K]; While[Length@K < 10, k++; If[! PrimeQ[k] && ! IntersectingQ[FactorInteger[k][[All, 1]], f], s = k; z = 0; For[p = 1, p <= Length@q, p++, If[PrimeQ[Total[q[[p]]] + k], z = 1; Break[]]]; If[z == 0, AppendTo[K, k]; q = Subsets[K]; AppendTo[f, FactorInteger[k][[All, 1]]]; f = Flatten[f]]]]; Print[K] (* Samuel Harkness, Apr 11 2023 *)
-
Python
import sys import math from sympy.ntheory import primefactors from sympy.ntheory import primerange def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return len(lst3) n_primes=1000000 factors=[primefactors(n) for n in range(0,n_primes)] primes=list(primerange(0, n_primes)) sequence=[4] sums=[sequence[0]] prime_factors=[f for f in factors[sequence[0]]] big_n=8 while len(sequence)
-
Python
from math import gcd from sympy import isprime from itertools import islice def agen(start=4): # generator of terms alst, k, sums = [start], start+1, {0} | {start} while True: yield alst[-1] while any(gcd(k, an) != 1 for an in alst) or \ any(k+s not in sums and isprime(k+s) for s in sums): k += 1 alst.append(k) sums.update([k + s for s in sums]) k += 1 print(list(islice(agen(), 8))) # Michael S. Branicky, Dec 16 2022
Extensions
a(8)-a(9) from Michael S. Branicky, Dec 15 2022
a(10) from Rémy Sigrist, Dec 16 2022
Comments