cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359071 Numerators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).

This page as a plain text file.
%I A359071 #9 Dec 26 2022 03:11:43
%S A359071 1,2,5,7,9,11,35,19,22,25,53,59,65,71,145,157,163,175,181,193,205,217,
%T A359071 221,227,239,81,83,87,91,95,479,499,519,539,549,569,589,609,1847,1907,
%U A359071 1967,2027,2057,2087,2147,2207,1111,563,1141,1171,593,608,613,628,211
%N A359071 Numerators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).
%H A359071 Amiram Eldar, <a href="/A359071/b359071.txt">Table of n, a(n) for n = 2..10000</a>
%H A359071 Wolfgang Schwarz and Jürgen Spilker, <a href="https://doi.org/10.1515/9783110944648.221">A remark on some special arithmetical functions</a>, in: E. Laurincikas , E. Manstavicius and V. Stakenas (eds.), Analytic and Probabilistic Methods in Number Theory, Proceedings of the Second International Conference in Honour of J. Kubilius, Palanga, Lithuania, 23-27 September 1996, New Trends in Probability and Statistics, Vol. 4, VSP BV & TEV Ltd. (1997), pp. 221-245.
%H A359071 D. Suryanarayana and R. Chandra Rao, <a href="https://doi.org/10.1007/BF01223919">On the maximum and minimum exponents in factoring integers</a>, Archiv der Mathematik, Vol. 28, No. 1 (1977), pp. 261-269.
%H A359071 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A359071 a(n) = numerator(Sum_{k=2..n} 1/A051903(k)).
%F A359071 a(n)/A359072(n) = c_1 * n + O(n^(1/2)*exp(-c_2*log(n)^(3/5)/log(log(n))^(1/5))), where c_1 = A242977 and c_2 is a constant, 0 < c_2 < 1/2^(8/5) (Suryanarayana and R. Chandra Rao, 1977).
%e A359071 Fractions begin with 1, 2, 5/2, 7/2, 9/2, 11/2, 35/6, 19/3, 22/3, 25/3, 53/6, 59/6, ...
%t A359071 f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; Numerator[Accumulate[Table[1/f[n], {n, 2, 100}]]]
%Y A359071 Cf. A051903, A129132, A242977, A359072 (denominators).
%K A359071 nonn,frac
%O A359071 2,2
%A A359071 _Amiram Eldar_, Dec 15 2022