A359078 a(n) is the first positive number that can be represented in exactly n ways as the sum of cubes of three distinct integers in arithmetic progression.
9, 99, 792, 3829608, 255816, 24814152, 198513216, 1588105728, 669982104, 5359856832, 42878854656, 7133969443392, 57071755547136
Offset: 1
Examples
a(3) = 792 because 792 = (-6)^3 + 2^3 + 10^3 = (-1)^3 + 4^3 + 9^3 = 4^3 + 6^3 + 8^3 is the first number that can be represented in exactly 3 ways.
Crossrefs
Cf. A359030.
Programs
-
Maple
N:= 5*10^10: L:= NULL: for a from 1 while 3*a^3 <= N do for b from 1 do x:= 3*a*(a^2 + 2*b^2); if x > N then break fi; L:= L,x od od: L:= sort([L]): V:= Vector(11): m:= L[1]: count:= 1: for i from 2 to nops(L) do if L[i] = m then count:= count+1 else if V[count] = 0 then V[count]:= m fi; count:= 1; m:= L[i]; fi od: convert(V,list);
Extensions
a(12)-a(13) from Ondrej Kutal, Dec 21 2022
Comments