A359079 a(n) is the sum of the divisors d of 2*n such that the binary expansions of d and 2*n have no common 1-bit.
1, 3, 1, 7, 6, 6, 1, 15, 10, 13, 1, 16, 1, 3, 1, 31, 18, 33, 1, 32, 22, 3, 1, 36, 6, 3, 10, 14, 1, 6, 1, 63, 34, 54, 1, 70, 38, 22, 1, 70, 42, 48, 1, 7, 6, 3, 1, 76, 1, 38, 18, 7, 1, 24, 1, 36, 1, 3, 1, 21, 1, 3, 1, 127, 84, 116, 1, 126, 70, 38, 1, 153, 74, 77
Offset: 1
Examples
For n = 6: - the divisors of 12 are: d bin(d) common bit? -- ------ ----------- 1 1 no 2 10 no 3 11 no 4 100 yes 6 110 yes 12 1100 yes - hence a(6) = 1 + 2 + 3 = 6.
Links
Programs
-
Mathematica
a[n_] := DivisorSum[2n, #*Boole[BitAnd[#, 2n] == 0] &]; Array[a, 74]
-
PARI
a(n) = sumdiv(2*n, d, if (bitand(2*n,d)==0, d, 0))
-
Python
from sympy import divisors as divs def a(n): return sum(d for d in divs(2*n, generator=True) if (d>>1)&n == 0) print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Dec 15 2022
Formula
a(n) <= A346878(n) with equality iff n is a power of 2.
Comments