cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359085 Odd numbers k such that A246601(k) > 2*k.

This page as a plain text file.
%I A359085 #11 Dec 26 2022 09:45:34
%S A359085 4095,16777215,33550335,67096575,134189055,268374015,536743935,
%T A359085 1073483775,2146963455,4293922815,8587841535,17175678975,34351353855,
%U A359085 68702703615,68719476735,137405403135,137422176255,137438949375,274810802175,274827575295,274844348415,274877894655
%N A359085 Odd numbers k such that A246601(k) > 2*k.
%C A359085 These are the odd terms of A359084 and also its primitive terms, since if m is a term then m*2^k is a term of A359084 for all k >= 0.
%C A359085 The least term that is not divisible by 4095 is a(29) = 1099511627775 = 2^40 - 1.
%H A359085 Amiram Eldar, <a href="/A359085/b359085.txt">Table of n, a(n) for n = 1..29</a>
%H A359085 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.
%H A359085 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>.
%t A359085 s[n_] := DivisorSum[n, # &, BitAnd[n, #] == # &]; Select[Range[1, 2^24, 2], s[#] > 2*# &]
%o A359085 (PARI) is(n) = n%2 && sumdiv(n, d, d * (bitor(n, d) == n)) > 2*n;
%Y A359085 Cf. A246601.
%Y A359085 Subsequence of A005101, A005231 and A359084.
%K A359085 nonn,base
%O A359085 1,1
%A A359085 _Amiram Eldar_, Dec 15 2022