This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359085 #11 Dec 26 2022 09:45:34 %S A359085 4095,16777215,33550335,67096575,134189055,268374015,536743935, %T A359085 1073483775,2146963455,4293922815,8587841535,17175678975,34351353855, %U A359085 68702703615,68719476735,137405403135,137422176255,137438949375,274810802175,274827575295,274844348415,274877894655 %N A359085 Odd numbers k such that A246601(k) > 2*k. %C A359085 These are the odd terms of A359084 and also its primitive terms, since if m is a term then m*2^k is a term of A359084 for all k >= 0. %C A359085 The least term that is not divisible by 4095 is a(29) = 1099511627775 = 2^40 - 1. %H A359085 Amiram Eldar, <a href="/A359085/b359085.txt">Table of n, a(n) for n = 1..29</a> %H A359085 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>. %H A359085 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>. %t A359085 s[n_] := DivisorSum[n, # &, BitAnd[n, #] == # &]; Select[Range[1, 2^24, 2], s[#] > 2*# &] %o A359085 (PARI) is(n) = n%2 && sumdiv(n, d, d * (bitor(n, d) == n)) > 2*n; %Y A359085 Cf. A246601. %Y A359085 Subsequence of A005101, A005231 and A359084. %K A359085 nonn,base %O A359085 1,1 %A A359085 _Amiram Eldar_, Dec 15 2022