This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359087 #52 Jan 25 2023 09:47:46 %S A359087 1,4,19,78,301,1108,3951,13758,47049,158616,528619,1745098,5715429, %T A359087 18593032,60136183,193525002,620046513,1978886448,6293809971, %U A359087 19955385762,63094947981,198990438408,626141673375,1966085927898,6161660863929,19276374528468,60206635741131 %N A359087 a(n) is equal to the last point of a reverse pyramid summation with base 1, 2, 3, ..., n-2, n-1, n, n-1, n-2, ..., 3, 2, 1. %C A359087 Each element in the pyramid below the base is equal to the sum of the top left, top, and top right elements. %C A359087 Each row has 2*n-(1+2*r) elements where r is the row number starting from 0. %C A359087 The sum of elements in the first row is n^2. %C A359087 The total number of elements in the pyramid is n^2. %F A359087 a(n) = Sum_{k=1..2*n-1} A004737(k + (n-1)^2) * A027907(k + (n-1)^2 - 1). %F A359087 Empirical g.f.: x/(1-3*x)^2 - 2*x^2/((1+x)^(1/2)*(1-3*x)^(3/2)). - _Robert Israel_, Dec 17 2022 %F A359087 a(n) = n*3^(n-1) - 2*A132894(n-1) (conjectured). - _Bernard Schott_, Dec 20 2022 %e A359087 For n = 3: %e A359087 1 2 3 2 1 %e A359087 6 7 6 %e A359087 19 %e A359087 so a(3) = 19. %e A359087 For n = 4: %e A359087 1 2 3 4 3 2 1 %e A359087 6 9 10 9 6 %e A359087 25 28 25 %e A359087 78 %e A359087 so a(4) = 78. %p A359087 f:= proc(n) local L,i; %p A359087 L:= [seq(i,i=1..n),seq(n-i,i=1..n-1)]; %p A359087 for i from 1 to n-1 do %p A359087 L:= L[1..-3] + L[2..-2] + L[3..-1] %p A359087 od; %p A359087 op(L) %p A359087 end proc: %p A359087 map(f, [$1..30]); # _Robert Israel_, Dec 17 2022 %t A359087 f[n_] := Module[{L, i}, L = Range[n]~Join~Table[n-i, {i, 1, n-1}]; For[i = 1, i <= n-1, i++, L = L[[1;;-3]] + L[[2;;-2]] + L[[3;;-1]]]; L[[1]]]; %t A359087 f /@ Range[30] (* _Jean-François Alcover_, Jan 25 2023, after _Robert Israel_ *) %o A359087 (C) %o A359087 unsigned long tri(int n, int k) %o A359087 { %o A359087 if (n == 0 && k == 0) return 1; %o A359087 if(k < -n || k > n) return 0; %o A359087 return tri(n - 1, k - 1) + tri(n - 1, k) + tri(n - 1, k + 1); %o A359087 } %o A359087 unsigned long a(int n) %o A359087 { %o A359087 unsigned long sum = 0; %o A359087 sum += tri(n - 1,0) * n; %o A359087 for (int i = 1; i < n; i++) %o A359087 { %o A359087 sum += 2 * tri(n - 1,n - i) * i; %o A359087 } %o A359087 return sum; %o A359087 } %Y A359087 Cf. A004737, A027907, A132894. %K A359087 nonn %O A359087 1,2 %A A359087 _Moosa Nasir_, Dec 15 2022