A359098 Numbers with exactly four nonzero decimal digits and not ending with 0.
1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1161, 1162, 1163, 1164, 1165, 1166, 1167
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Yann Bugeaud, On the digital representation of integers with bounded prime factors, Osaka J. Math. 55 (2018), 315-324; arXiv:1609.07926 [math.NT], 2016.
Crossrefs
Cf. A358737.
Programs
-
Mathematica
Select[Range[1111, 1199], And[Mod[#, 10] != 0, Total@ Most@ DigitCount[#] == 4] &] (* Michael De Vlieger, Jan 03 2023 *)
-
PARI
list(lim)=my(v=List()); for(d=4,#Str(lim\=1), my(A=10^(d-1)); forstep(a=A,9*A,A, for(i=2,d-2, my(B=10^i); forstep(b=a+B,a+9*B,B, for(j=1,i-1, my(C=10^j); forstep(c=b+C,b+9*C,C, for(d=c+1,c+9, if(d>lim, return(Vec(v))); listput(v,d)))))))); Vec(v)
-
Python
from itertools import count, islice def A359098_gen(): # generator of terms for a in count(3): a10 = 10**a for ad in range(1,10): for b in range(2,a): b10 = 10**b for bd in range(1,10): for c in range(1,b): c10 = 10**c for cd in range(1,10): for dd in range(1,10): yield ad*a10+bd*b10+cd*c10+dd A359098_list = list(islice(A359098_gen(),30)) # Chai Wah Wu, Jan 03 2023
Formula
a(n) is roughly 10^(k*n^(1/3)), where k = (2/9)^(1/3)/3 = 0.2019....
Comments