cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359104 Decimal expansion of the area enclosed by Sylvester's Bicorn curve.

This page as a plain text file.
%I A359104 #32 Feb 16 2025 08:34:04
%S A359104 7,4,6,4,5,5,9,4,5,4,3,9,3,4,6,4,6,3,3,4,1,4,6,1,6,7,2,7,5,8,9,6,5,7,
%T A359104 5,8,7,7,0,5,3,5,3,7,5,1,0,7,8,9,6,8,2,0,3,4,3,6,5,7,6,3,5,4,3,9,6,2,
%U A359104 3,2,4,1,4,4,5,7,8,1,1,5,1,2,9,3,6,8,6,3,8,3,3,1,3,9,0,9,0,8,9
%N A359104 Decimal expansion of the area enclosed by Sylvester's Bicorn curve.
%C A359104 The Cartesian equation of Sylvester's Bicorn curve is y^2*(m^2-x^2) = (x^2+2*m*y-m^2)^2, here with parameter m=1. The area is proportional to the square m^2 of parameter m.
%C A359104 Corresponding arc length is given by A228764.
%D A359104 M. Protat, Des Olympiades à l'Agrégation, Encadrement du bicorne, Problème 66, pp. 142-145, Ellipses, Paris 1997.
%H A359104 Robert Ferréol, <a href="https://mathcurve.com/courbes2d.gb/bicorne/bicorne.shtml">Bicorn</a>, Mathcurve.
%H A359104 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Bicorn.html">Bicorn</a>.
%H A359104 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bicorn">Bicorn</a>.
%H A359104 <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Cu">Index to sequences related to curves</a>.
%F A359104 Equals (16*sqrt(3) - 27)*Pi/3.
%e A359104 0.746455945439346463341461672758965758770535375107896820343...
%p A359104 evalf((16*sqrt(3) - 27)*Pi/3, 100);
%t A359104 RealDigits[(16*Sqrt[3] - 27)*Pi/3, 10, 120][[1]] (* _Amiram Eldar_, Dec 18 2022 *)
%Y A359104 Cf. A228764 (length).
%Y A359104 Other area of curves: A019692 (deltoid), A197723 (cardioid), A122952 (nephroid), A180434 (Newton strophoid).
%K A359104 nonn,cons
%O A359104 0,1
%A A359104 _Bernard Schott_, Dec 18 2022