This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359107 #9 Jun 13 2023 07:55:41 %S A359107 1,0,1,0,1,2,0,1,4,5,0,1,8,14,15,0,1,16,41,51,52,0,1,32,122,187,202, %T A359107 203,0,1,64,365,715,855,876,877,0,1,128,1094,2795,3845,4111,4139,4140, %U A359107 0,1,256,3281,11051,18002,20648,21110,21146,21147 %N A359107 Triangle read by rows, T(n, k) = Sum_{j=0..k} Stirling2(n, j) = Sum_{j=0..k} A048993(n, j). %C A359107 T(n, k) is the number of partitions of an n-set that contain at most k nonempty subsets. %e A359107 Triangle T(n, k) starts: %e A359107 [0] [1] %e A359107 [1] [0, 1] %e A359107 [2] [0, 1, 2] %e A359107 [3] [0, 1, 4, 5] %e A359107 [4] [0, 1, 8, 14, 15] %e A359107 [5] [0, 1, 16, 41, 51, 52] %e A359107 [6] [0, 1, 32, 122, 187, 202, 203] %e A359107 [7] [0, 1, 64, 365, 715, 855, 876, 877] %e A359107 [8] [0, 1, 128, 1094, 2795, 3845, 4111, 4139, 4140] %e A359107 [9] [0, 1, 256, 3281, 11051, 18002, 20648, 21110, 21146, 21147] %p A359107 with(ListTools): ps := L -> PartialSums(L): %p A359107 Flatten([seq(ps([seq(Stirling2(n, k), k = 0..n)]), n = 0..10)]); %Y A359107 Cf. A048993, A000110 (T(n, n)), A359355 (T(2*n, n)), A359109 (row sums). %Y A359107 Without column k=0 the same as A102661. %K A359107 nonn,tabl %O A359107 0,6 %A A359107 _Peter Luschny_, Dec 27 2022