This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359120 #28 Dec 18 2022 08:26:21 %S A359120 3,11,47,221,1433,9579,69044,519260,4056919,32504975,266490184, %T A359120 2224590493,18850792161 %N A359120 Number of primes p with 10^(n-1) < p < 10^n such that 10^n-p is also prime. %C A359120 The terms of A358310 come in decreasing blocks; a(n) is the length of the n-th block. %e A359120 For n = 1, there are three primes p with 1 < p < 10 such that 10-p is also prime, 3, 5, and 7, so a(1) = 3. %o A359120 (PARI) a(n) = {if(n==1,return(3)); my(res=0, pow10=10^n); forprime(p=2, 10^(n-1), if(isprime(pow10-p), res++)); forprime(p=10^(n-1), pow10>>1, if(isprime(pow10-p), res+=2)); res} \\ _David A. Corneth_, Dec 17 2022 %o A359120 (Python) %o A359120 from sympy import isprime, primerange %o A359120 def a(n): %o A359120 lb, ub = 10**(n-1), 10**n %o A359120 s1 = sum(1 for p in primerange(1, lb) if isprime(ub-p)) %o A359120 s2 = sum(2 for p in primerange(lb, 5*lb) if isprime(ub-p)) %o A359120 return s1 + s2 + int(n == 1) %o A359120 print([a(n) for n in range(1, 8)]) # _Michael S. Branicky_, Dec 17 2022 %Y A359120 A107318 and A065577 are very similar. %Y A359120 Cf. A006879, A358310. %K A359120 nonn,more %O A359120 1,1 %A A359120 _N. J. A. Sloane_, Dec 17 2022 %E A359120 a(7)-a(9) from _Michael S. Branicky_, Dec 17 2022 %E A359120 a(10)-a(11) from _David A. Corneth_, Dec 17 2022 %E A359120 a(12) from _N. J. A. Sloane_, Dec 17 2022, found using Corneth's PARI program. %E A359120 a(13) from _Martin Ehrenstein_, Dec 18 2022, found using Walisch's primesieve library.