cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359174 First of three consecutive primes p, q, r, such that the reverse of p+q+r is divisible by at least one of p, q and r.

This page as a plain text file.
%I A359174 #13 Dec 31 2022 02:31:42
%S A359174 3,7,17,53,97,193,431,1997,5381,30097,128663,278209,385831,481141,
%T A359174 1217509,2401991,2485831,2625911,3070037,35912561,39202231,44531771,
%U A359174 45393841,47084041,50037011,53639681,54693481,54949481,55225217,56094281,56885351,58632851,59858651,61030121,62932621,64195073,64683491
%N A359174 First of three consecutive primes p, q, r, such that the reverse of p+q+r is divisible by at least one of p, q and r.
%C A359174 Suggested in an email from _J. M. Bergot_.
%C A359174 It appears that in most cases, p+q+r = 3*q and is a palindrome.  This occurs for 109 of the 122 terms < 5*10^9.
%e A359174 a(3) = 17 is a term because 17, 19, 23 are consecutive primes with 17 + 19 + 23 = 59 and the reverse of 59 is 95 which is divisible by 19.
%p A359174 rev:= proc(n) local L,i;
%p A359174 L:= convert(n,base,10);
%p A359174 add(L[-i]*10^(i-1),i=1..nops(L))
%p A359174 end proc:
%p A359174 q:= 2: r:= 3:
%p A359174 R:= NULL: count:= 0:
%p A359174 while count < 50 do
%p A359174   p:= q; q:= r; r:= nextprime(r);
%p A359174   x:= rev(p+q+r);
%p A359174   if x mod p = 0 or x mod q = 0 or x mod r = 0 then count:= count+1; R:= R,p;
%p A359174   fi;
%p A359174 od:
%p A359174 R;
%t A359174 q[tri_] := AnyTrue[tri, Divisible[IntegerReverse[Total[tri]], #] &]; Select[Partition[Prime[Range[250000]], 3, 1], q][[;; , 1]] (* _Amiram Eldar_, Dec 28 2022 *)
%o A359174 (Python)
%o A359174 from sympy import nextprime
%o A359174 from itertools import count, islice
%o A359174 def agen(): # generator of terms
%o A359174     p, q, r = 2, 3, 5
%o A359174     while True:
%o A359174         t = int(str(p+q+r)[::-1])
%o A359174         if any(t%s == 0 for s in (p, q, r)): yield p
%o A359174         p, q, r = q, r, nextprime(r)
%o A359174 print(list(islice(agen(), 19))) # _Michael S. Branicky_, Dec 27 2022
%Y A359174 Cf. A004086, A034961.
%K A359174 nonn,base
%O A359174 1,1
%A A359174 _Robert Israel_, Dec 27 2022