cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359184 Numbers k such that 30*k - 1, 30*k + 1, 30*k^2 - 1 and 30*k^2 + 1 are all prime.

This page as a plain text file.
%I A359184 #15 Dec 22 2022 02:10:33
%S A359184 1,14,118,232,538,720,1155,1253,2821,3151,6161,6238,6916,7428,7827,
%T A359184 9009,9521,9933,10284,10779,11661,12348,13663,13811,14092,14938,15273,
%U A359184 16323,16457,17116,17940,20735,21931,22022,24010,24311,24375,26557,28293,29645,30555,33880,34033,34328,35797,36413
%N A359184 Numbers k such that 30*k - 1, 30*k + 1, 30*k^2 - 1 and 30*k^2 + 1 are all prime.
%C A359184 Numbers k such that 30*k and 30*k^2 are in A014574.
%C A359184 The first number k > 1 such that 30*k - 1, 30*k + 1, 30*k^2 - 1, 30*k^2 + 1, 30*k^3 - 1 and 30*k^3 + 1 are all prime is 266225.
%H A359184 Robert Israel, <a href="/A359184/b359184.txt">Table of n, a(n) for n = 1..10000</a>
%e A359184 a(2) = 14 is a term because 30*14 - 1 = 419, 30*14 + 1 = 421, 30*14^2 - 1 = 5879, and 30*14^2 + 1 = 5881 are all prime.
%p A359184 select(k -> isprime(30*k-1) and isprime(30*k+1) and isprime(30*k^2-1) and isprime(30*k^2+1), [$1..10^5]);
%t A359184 Select[Range[40000], AllTrue[{30*# - 1, 30*# + 1, 30*#^2 - 1, 30*#^2 + 1}, PrimeQ] &] (* _Amiram Eldar_, Dec 19 2022 *)
%Y A359184 Cf. A014574.
%Y A359184 Intersection of A176114 and A283867.
%K A359184 nonn
%O A359184 1,2
%A A359184 _Robert Israel_, Dec 18 2022