A359194 Binary complement of 3*n.
1, 0, 1, 6, 3, 0, 13, 10, 7, 4, 1, 30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 0, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7, 4, 1, 126, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60, 57
Offset: 0
Examples
a(7) = 10 because 3*7 = 21 = 10101_2, whose binary complement is 01010_2 = 10. a(42) = 1 because 3*42 = 126 = 1111110_2, whose binary complement is 0000001_2 = 1. a(52) = 99 by 3*n = binary 10011100 complement = binary 01100011 = 99.
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..10000
- Joshua Searle, Collatz-inspired sequences.
Programs
-
PARI
a(n)=if(n, bitneg(3*n, exponent(3*n)+1), 1) \\ Rémy Sigrist, Dec 22 2022
-
Python
def a(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length()) - 1) print([a(n) for n in range(67)]) # Michael S. Branicky, Dec 20 2022
Formula
a(n) = A035327(3*n).
a(n) = 0 iff n belongs to A002450 \ {0}. - Rémy Sigrist, Dec 22 2022
Comments