This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359200 #19 Dec 21 2022 20:42:35 %S A359200 0,1,1,3,8,3,7,30,30,7,15,88,144,88,15,31,230,520,520,230,31,63,564, %T A359200 1620,2240,1620,564,63,127,1330,4620,8120,8120,4620,1330,127,255,3056, %U A359200 12432,26432,33600,26432,12432,3056,255,511,6894,32112,79968,122976,122976,79968,32112,6894,511 %N A359200 Triangle read by rows: T(n, k) = A358125(n,k)*binomial(n-1, k), 0 <= k <= n-1. %F A359200 T(n, k) = (2^n - 2^(n-k-1) - 2^k)*binomial(n-1, k), for n >= 1 and 0 <= k <= n-1. %e A359200 Triangle begins: %e A359200 0; %e A359200 1, 1; %e A359200 3, 8, 3; %e A359200 7, 30, 30, 7; %e A359200 15, 88, 144, 88, 15; %e A359200 31, 230, 520, 520, 230, 31; %e A359200 63, 564, 1620, 2240, 1620, 564, 63; %e A359200 127, 1330, 4620, 8120, 8120, 4620, 1330, 127; %e A359200 255, 3056, 12432, 26432, 33600, 26432, 12432, 3056, 255; %e A359200 511, 6894, 32112, 79968, 122976, 122976, 79968, 32112, 6894, 511; %e A359200 1023, 15340, 80460, 229440, 413280, 499968, 413280, 229440, 80460, 15340, 1023; %e A359200 ... %p A359200 T := n -> local k; seq((2^n - 2^(n - k - 1) - 2^k)*binomial(n - 1, k), k = 0 .. n - 1); %p A359200 seq(T(n), n = 1 .. 11); %t A359200 T[n_, k_] := (2^n - 2^(n - k - 1) - 2^k)*Binomial[n - 1, k]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* _Amiram Eldar_, Dec 20 2022 *) %Y A359200 Row sums give 2*A005061(n-1). %K A359200 nonn,easy,tabl %O A359200 1,4 %A A359200 _Ambrosio Valencia-Romero_, Dec 20 2022