This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359210 #20 Apr 01 2023 23:42:12 %S A359210 1,3,8,15,27,40,48,63,63,104,135,168,180,195,135,200,171,360,315,351, %T A359210 420,375,243,420,560,520,495,315,648,624,819,675,660,675,584,975,1000, %U A359210 891,495,680,531,1512,999,1280,1064,1323,1755,1095,675,1480,1140,1287 %N A359210 Number of m^k == 1 (mod p) for 0 < m,k < p where p is the n-th prime. %C A359210 a(n) is the sum of (p-1) / order(m, p) for all m in Zp for the n-th prime. %e A359210 For n=3 the a(3) = 8 numbers with m^k == 1 (mod 5) (the third prime) are (1,1), (1,2), (1,3), (1,4), (2,4), (3,4), (4,2), (4,4). %t A359210 Table[Sum[(p - 1)/MultiplicativeOrder[m, p], {m, 1, p - 1}], {p, Prime[Range[20]]}] %o A359210 (PARI) a(n)= my(p=prime(n)); sum(m=1,p-1,(p-1)/znorder(Mod(m,p))) %o A359210 (Python) %o A359210 import sympy %o A359210 print([sum((p-1) // sympy.ntheory.n_order(m, p) for m in range(1, p)) for p in sympy.primerange(100)]) %Y A359210 Cf. A036391, A086145, A174842. %K A359210 nonn %O A359210 1,2 %A A359210 _Seth A. Troisi_, Dec 20 2022