This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359217 #46 Apr 01 2023 11:22:49 %S A359217 0,0,1,1,2,2,1,1,0,0,-1,-1,-2,-2,-1,-1,0,0,1,1,2,2,3,3,4,4,3,3,2,2,1, %T A359217 1,0,0,-1,-1,-2,-2,-3,-3,-4,-4,-3,-3,-2,-2,-1,-1,0,0,1,1,2,2,3,3,4,4, %U A359217 5,5,6,6,5,5,4,4,3,3,2,2,1,1,0,0,-1,-1 %N A359217 Y-coordinates of a point moving along a counterclockwise undulating spiral on a square grid. %C A359217 X-coordinates are given in A359216. %H A359217 Rémy Sigrist, <a href="/A359217/b359217.txt">Table of n, a(n) for n = 0..10081</a> %H A359217 Hans G. Oberlack, <a href="/A359217/a359217.pdf">Counterclockwise undulating spiral in a square grid</a> %H A359217 Rémy Sigrist, <a href="/A359217/a359217.gp.txt">PARI program</a> %H A359217 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A359217 Conjecture: a(n) = T10 + T15 + T20 + T21 where %F A359217 T1 = floor(n/16); %F A359217 T2 = sqrt(2*T1 + 1/4); %F A359217 T3 = floor(T2 - 1/2); %F A359217 T4 = n - T3*(T3+1)*16/2; %F A359217 T5 = (T3+1)*16; %F A359217 T6 = T4 + (3/4)*T5 - 1; %F A359217 T7 = T6/T5; %F A359217 T8 = floor(T7); %F A359217 T9 = 1 - T8; %F A359217 T10 = T9 - floor(T4/2); %F A359217 T11 = T4 + (2/4)*T5 - 1; %F A359217 T12 = T11/T5; %F A359217 T13 = floor(T12); %F A359217 T14 = T8 - T13; %F A359217 T15 = T14*floor((T5 - T11)/2); %F A359217 T16 = T4 + (1/4)*T5 - 1; %F A359217 T17 = T16/T5; %F A359217 T18 = floor(T17); %F A359217 T19 = T13 - T18; %F A359217 T20 = -T19*floor((T4 - T5/2)/2); %F A359217 T21 = -T18*floor((T5 - T4 + 1)/2). %F A359217 a(2*n) = A180714(n). - _Rémy Sigrist_, Apr 01 2023 %e A359217 y ^ %e A359217 | %e A359217 4 | 25--24 %e A359217 | | | %e A359217 3 | 27--26 23--22 %e A359217 | | | %e A359217 2 | 29--28 5---4 21--20 %e A359217 | | | | | %e A359217 1 | 31--30 7---6 3---2 19--18 %e A359217 | | | | | %e A359217 0 | 32--33 8---9 0---1 16--17 %e A359217 | | | | | %e A359217 -1 | 34--35 10--11 14--15 46--47 %e A359217 | | | | | %e A359217 -2 | 36--37 12--13 44--45 %e A359217 | | | %e A359217 -3 | 38--39 42--43 %e A359217 | | | %e A359217 -4 | 40--41 %e A359217 +------------------------------------> %e A359217 -4 -3 -2 -1 0 1 2 3 4 x %o A359217 (PARI) See Links section. %Y A359217 Cf. A180714, A359058, A359216. %K A359217 sign,walk %O A359217 0,5 %A A359217 _Hans G. Oberlack_, Dec 21 2022