This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359219 #22 Jan 05 2023 18:58:25 %S A359219 0,1,2,3,4,9,11,12,17,23,28,33,74,86,180,227,350,821,3822,4187,5561, %T A359219 6380,6398,22174,22246,26494,34859,49827,70772,103721,104282,204953, %U A359219 213884,225095,407354,425720 %N A359219 Starting numbers that require more iterations of the map x->A359194(x) (binary complement of 3n) to reach 0 than any smaller number. %C A359219 425720 after 10^10 iterations has not yet reached 0 and in general it is unknown whether every starting number does reach 0. %C A359219 A359207(425720) = 87037147316. - _Martin Ehrenstein_, Jan 02 2023 %H A359219 Joshua Searle, <a href="https://qedscience.wordpress.com/2021/02/19/collatz-inspired-sequences/">Collatz-inspired sequences</a> %e A359219 3 is a term because it requires 11 iterations to reach 0, which is more than any starting number less than 3. %e A359219 0: (0) -- 0 terms %e A359219 1: (1, 0) -- 1 term %e A359219 2: (2, 1, 0) -- 2 terms %e A359219 3: (3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0) -- 11 terms. %o A359219 (Python) %o A359219 from itertools import count, islice %o A359219 def f(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length())-1) %o A359219 def iters(n): %o A359219 i, fi = 0, n %o A359219 while fi != 0: i, fi = i+1, f(fi) %o A359219 return i %o A359219 def agen(): # generator of terms %o A359219 record = -1 %o A359219 for m in count(0): %o A359219 v = iters(m) %o A359219 if v > record: yield m; record = v %o A359219 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Dec 21 2022 %Y A359219 Cf. A035327, A359194, A359207, A359208, A359209, A359215, A359218, A359220, A359221, A359222. %K A359219 nonn,base,more %O A359219 1,3 %A A359219 _Joshua Searle_, Dec 21 2022 %E A359219 a(27)-a(36) from _Tom Duff_ (SeqFan mailing list, Dec 19 2022)