This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359221 #18 Jan 05 2023 18:55:58 %S A359221 0,1,2,3,12,28,227,821,22246,26494,204953,425720 %N A359221 Starting numbers which reach a new record high value when iterating the map x->A359194(x) (binary complement of 3n). %C A359221 It is unknown whether all starting numbers reach 0. %C A359221 103721 is not a term of this sequence despite having a trajectory of record length, because its maximum of 2.42...*10^14081 is lower than the previous record holder. %H A359221 Joshua Searle, <a href="https://qedscience.wordpress.com/2021/02/19/collatz-inspired-sequences/">Collatz-inspired sequences</a> %e A359221 Let S(x) = iteration sequence of A359194 starting with x; then %e A359221 S(0) = (0), maximum = 0; %e A359221 S(1) = (1, 0), maximum = 1; %e A359221 S(2) = (2, 1, 0), maximum = 2; %e A359221 S(3) = (3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0), maximum = 300; %e A359221 Since S(3) contains a higher maximum than any lower positive starting integer, 3 is a term of this sequence. %o A359221 (Python) %o A359221 from itertools import count, islice %o A359221 def f(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length())-1) %o A359221 def itersmax(n): %o A359221 i, fi, m = 0, n, n %o A359221 while fi != 0: i, fi, m = i+1, f(fi), max(m, fi) %o A359221 return i, m %o A359221 def agen(): # generator of terms %o A359221 record = -1 %o A359221 for m in count(0): %o A359221 v, mx = itersmax(m) %o A359221 if mx > record: %o A359221 yield m # use mx to obtain values %o A359221 record = mx %o A359221 print(list(islice(agen(), 8))) # _Michael S. Branicky_, Dec 22 2022 %Y A359221 Cf. A035327, A359194, A359207, A359208, A359209, A359215, A359218, A359219, A359220, A359222, A359255. %K A359221 nonn,base,more,hard %O A359221 1,3 %A A359221 _Joshua Searle_, Dec 22 2022