This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359222 #12 Jan 05 2023 18:56:43 %S A359222 0,1,2,11,80,7572,664475,3180929,120796790,556068798,1246707529, %T A359222 87037147316 %N A359222 Number of steps to reach 0 from A359221(n) (Starting numbers that reach a new record high value during iteration by the map x->A359194(x)). %C A359222 a(12) found by Tom Duff (26 Dec 2022). %C A359222 It is unknown whether all starting numbers reach 0. %H A359222 Joshua Searle, <a href="https://qedscience.wordpress.com/2021/02/19/collatz-inspired-sequences/">Collatz-inspired sequences</a> %e A359222 a(4) is the step count from the starting number A359221(4) = 3: (3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0) -- 11 steps, hence a(4) = 11. %o A359222 (Python) %o A359222 from itertools import count, islice %o A359222 def f(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length())-1) %o A359222 def itersmax(n): %o A359222 i, fi, m = 0, n, n %o A359222 while fi != 0: i, fi, m = i+1, f(fi), max(m, fi) %o A359222 return i, m %o A359222 def agen(): # generator of terms %o A359222 record = -1 %o A359222 for m in count(0): %o A359222 v, mx = itersmax(m) %o A359222 if mx > record: %o A359222 yield v # use m to obtain starting numbers %o A359222 record = mx %o A359222 print(list(islice(agen(), 8))) # _Michael S. Branicky_, Dec 29 2022 %Y A359222 Step counts of A359221. %Y A359222 Cf. A035327, A359194, A359207, A359208, A359209, A359215, A359218, A359219, A359220, A359255. %K A359222 nonn,base,more,hard %O A359222 1,3 %A A359222 _Joshua Searle_, Dec 29 2022