cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359227 Number of divisors of 4*n-3 of form 4*k+1.

This page as a plain text file.
%I A359227 #15 Aug 23 2023 08:42:15
%S A359227 1,2,2,2,2,2,3,2,2,2,2,4,2,2,2,2,4,2,2,2,3,4,2,2,2,2,4,2,2,4,2,4,2,2,
%T A359227 2,2,4,2,4,2,2,4,3,2,2,2,4,4,2,2,2,4,2,2,2,4,6,2,2,2,2,4,2,2,2,4,4,2,
%U A359227 4,2,2,4,3,2,4,2,4,2,2,2,2,6,2,4,2,2,4,2,2,4
%N A359227 Number of divisors of 4*n-3 of form 4*k+1.
%F A359227 a(n) = A001826(4*n-3).
%F A359227 G.f.: Sum_{k>0} x^k/(1 - x^(4*k-3)).
%t A359227 a[n_] := DivisorSum[4*n-3, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *)
%o A359227 (PARI) a(n) = sumdiv(4*n-3, d, d%4==1);
%o A359227 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-3))))
%Y A359227 Cf. A001826, A078703.
%K A359227 nonn,easy
%O A359227 1,2
%A A359227 _Seiichi Manyama_, Dec 22 2022