cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359236 Number of divisors of 5*n-2 of form 5*k+1.

This page as a plain text file.
%I A359236 #24 Aug 23 2023 08:42:00
%S A359236 1,1,1,2,1,1,2,1,1,3,1,1,2,1,1,3,1,2,2,1,1,3,1,1,2,2,1,3,2,1,2,1,1,4,
%T A359236 1,1,2,1,1,4,1,3,2,1,1,3,1,1,2,2,2,3,1,1,3,1,1,5,1,1,2,2,1,3,1,2,2,2,
%U A359236 1,3,1,1,3,3,1,4,1,1,2,1,2,4,1,2,2,1,1,3,1,3
%N A359236 Number of divisors of 5*n-2 of form 5*k+1.
%C A359236 Also number of divisors of 5*n-2 of form 5*k+3.
%H A359236 Seiichi Manyama, <a href="/A359236/b359236.txt">Table of n, a(n) for n = 1..10000</a>
%F A359236 a(n) = A001876(5*n-2) = A001878(5*n-2).
%F A359236 G.f.: Sum_{k>0} x^k/(1 - x^(5*k-2)).
%F A359236 G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(5*k-4)).
%t A359236 a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *)
%o A359236 (PARI) a(n) = sumdiv(5*n-2, d, d%5==1);
%o A359236 (PARI) a(n) = sumdiv(5*n-2, d, d%5==3);
%o A359236 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-2))))
%o A359236 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(5*k-4))))
%Y A359236 Cf. A001876, A001878, A359233, A359237, A359238.
%K A359236 nonn,easy
%O A359236 1,4
%A A359236 _Seiichi Manyama_, Dec 22 2022