This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359236 #24 Aug 23 2023 08:42:00 %S A359236 1,1,1,2,1,1,2,1,1,3,1,1,2,1,1,3,1,2,2,1,1,3,1,1,2,2,1,3,2,1,2,1,1,4, %T A359236 1,1,2,1,1,4,1,3,2,1,1,3,1,1,2,2,2,3,1,1,3,1,1,5,1,1,2,2,1,3,1,2,2,2, %U A359236 1,3,1,1,3,3,1,4,1,1,2,1,2,4,1,2,2,1,1,3,1,3 %N A359236 Number of divisors of 5*n-2 of form 5*k+1. %C A359236 Also number of divisors of 5*n-2 of form 5*k+3. %H A359236 Seiichi Manyama, <a href="/A359236/b359236.txt">Table of n, a(n) for n = 1..10000</a> %F A359236 a(n) = A001876(5*n-2) = A001878(5*n-2). %F A359236 G.f.: Sum_{k>0} x^k/(1 - x^(5*k-2)). %F A359236 G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(5*k-4)). %t A359236 a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *) %o A359236 (PARI) a(n) = sumdiv(5*n-2, d, d%5==1); %o A359236 (PARI) a(n) = sumdiv(5*n-2, d, d%5==3); %o A359236 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-2)))) %o A359236 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(5*k-4)))) %Y A359236 Cf. A001876, A001878, A359233, A359237, A359238. %K A359236 nonn,easy %O A359236 1,4 %A A359236 _Seiichi Manyama_, Dec 22 2022