cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359237 Number of divisors of 5*n-3 of form 5*k+1.

This page as a plain text file.
%I A359237 #22 Aug 23 2023 08:42:04
%S A359237 1,1,2,1,2,1,2,1,3,1,2,1,2,1,3,2,2,1,2,1,3,1,3,1,2,1,4,1,2,2,2,1,3,1,
%T A359237 2,1,3,2,4,1,2,1,2,2,3,1,2,1,3,1,5,1,2,1,3,1,3,2,2,2,2,1,4,1,3,1,2,1,
%U A359237 3,1,4,3,2,1,4,1,2,1,3,1,3,2,2,1,2,2,5,1,3,1
%N A359237 Number of divisors of 5*n-3 of form 5*k+1.
%C A359237 Also number of divisors of 5*n-3 of form 5*k+2.
%H A359237 Seiichi Manyama, <a href="/A359237/b359237.txt">Table of n, a(n) for n = 1..10000</a>
%F A359237 a(n) = A001876(5*n-3) = A001877(5*n-3).
%F A359237 G.f.: Sum_{k>0} x^k/(1 - x^(5*k-3)).
%F A359237 G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-4)).
%t A359237 a[n_] := DivisorSum[5*n-3, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *)
%o A359237 (PARI) a(n) = sumdiv(5*n-3, d, d%5==1);
%o A359237 (PARI) a(n) = sumdiv(5*n-3, d, d%5==2);
%o A359237 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-3))))
%o A359237 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-4))))
%Y A359237 Cf. A001876, A001877, A359233, A359236, A359238.
%K A359237 nonn,easy
%O A359237 1,3
%A A359237 _Seiichi Manyama_, Dec 22 2022