This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359237 #22 Aug 23 2023 08:42:04 %S A359237 1,1,2,1,2,1,2,1,3,1,2,1,2,1,3,2,2,1,2,1,3,1,3,1,2,1,4,1,2,2,2,1,3,1, %T A359237 2,1,3,2,4,1,2,1,2,2,3,1,2,1,3,1,5,1,2,1,3,1,3,2,2,2,2,1,4,1,3,1,2,1, %U A359237 3,1,4,3,2,1,4,1,2,1,3,1,3,2,2,1,2,2,5,1,3,1 %N A359237 Number of divisors of 5*n-3 of form 5*k+1. %C A359237 Also number of divisors of 5*n-3 of form 5*k+2. %H A359237 Seiichi Manyama, <a href="/A359237/b359237.txt">Table of n, a(n) for n = 1..10000</a> %F A359237 a(n) = A001876(5*n-3) = A001877(5*n-3). %F A359237 G.f.: Sum_{k>0} x^k/(1 - x^(5*k-3)). %F A359237 G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-4)). %t A359237 a[n_] := DivisorSum[5*n-3, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *) %o A359237 (PARI) a(n) = sumdiv(5*n-3, d, d%5==1); %o A359237 (PARI) a(n) = sumdiv(5*n-3, d, d%5==2); %o A359237 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-3)))) %o A359237 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-4)))) %Y A359237 Cf. A001876, A001877, A359233, A359236, A359238. %K A359237 nonn,easy %O A359237 1,3 %A A359237 _Seiichi Manyama_, Dec 22 2022