cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359240 Number of divisors of 4*n-3 of form 4*k+3.

This page as a plain text file.
%I A359240 #16 Aug 23 2023 08:41:52
%S A359240 0,0,1,0,0,2,0,0,2,0,0,2,1,0,2,0,0,2,0,2,2,0,0,2,0,0,4,0,0,2,1,0,2,2,
%T A359240 0,2,0,0,2,0,2,4,0,0,2,0,0,4,0,0,2,0,2,2,2,0,3,0,0,2,0,2,2,2,0,2,0,0,
%U A359240 4,0,0,4,0,0,4,2,0,2,0,0,2,0,2,2,0,2,4,0,0,4
%N A359240 Number of divisors of 4*n-3 of form 4*k+3.
%H A359240 Seiichi Manyama, <a href="/A359240/b359240.txt">Table of n, a(n) for n = 1..10000</a>
%F A359240 a(n) = A001842(4*n-3).
%F A359240 G.f.: Sum_{k>0} x^(3*k)/(1 - x^(4*k-1)).
%t A359240 a[n_] := DivisorSum[4*n-3, 1 &, Mod[#, 4] == 3 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *)
%o A359240 (PARI) a(n) = sumdiv(4*n-3, d, d%4==3);
%o A359240 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^(4*k-1)))))
%Y A359240 Cf. A359239, A359241.
%Y A359240 Cf. A001842.
%K A359240 nonn,easy
%O A359240 1,6
%A A359240 _Seiichi Manyama_, Dec 22 2022