cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359241 Number of divisors of 5*n-4 of form 5*k+4.

This page as a plain text file.
%I A359241 #16 Aug 23 2023 08:41:45
%S A359241 0,0,0,1,0,0,0,2,0,0,0,2,0,0,0,2,1,0,0,2,0,0,0,2,0,2,0,2,0,0,0,2,0,0,
%T A359241 2,2,0,0,0,3,0,0,0,4,0,0,0,2,0,0,0,2,2,2,0,2,0,0,0,2,0,2,0,2,0,0,0,4,
%U A359241 0,0,2,2,1,0,0,2,0,0,0,4,0,2,0,2,0,0,0,2,2,0
%N A359241 Number of divisors of 5*n-4 of form 5*k+4.
%H A359241 Seiichi Manyama, <a href="/A359241/b359241.txt">Table of n, a(n) for n = 1..10000</a>
%F A359241 a(n) = A001899(5*n-4).
%F A359241 G.f.: Sum_{k>0} x^(4*k)/(1 - x^(5*k-1)).
%t A359241 a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 4 &]; Array[a, 100] (* _Amiram Eldar_, Aug 23 2023 *)
%o A359241 (PARI) a(n) = sumdiv(5*n-4, d, d%5==4);
%o A359241 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^(5*k-1)))))
%Y A359241 Cf. A359239, A359240.
%Y A359241 Cf. A001899.
%K A359241 nonn,easy
%O A359241 1,8
%A A359241 _Seiichi Manyama_, Dec 22 2022