cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359244 Number of divisors of 5*n-4 of form 5*k+2.

This page as a plain text file.
%I A359244 #16 Aug 16 2023 02:27:13
%S A359244 0,1,0,1,1,1,0,2,0,1,1,2,0,2,0,1,1,1,1,3,0,1,1,1,0,3,0,2,1,1,0,3,1,1,
%T A359244 1,2,0,2,0,2,1,1,0,4,1,1,2,1,0,2,0,2,1,2,0,3,0,2,1,2,1,3,0,1,1,1,0,5,
%U A359244 0,1,2,1,0,2,1,2,1,1,1,4,0,2,1,3,0,2,0,1,2,1
%N A359244 Number of divisors of 5*n-4 of form 5*k+2.
%C A359244 Also number of divisors of 5*n-4 of form 5*k+3.
%H A359244 Seiichi Manyama, <a href="/A359244/b359244.txt">Table of n, a(n) for n = 1..10000</a>
%F A359244 a(n) = A001877(5*n-4) = A001878(5*n-4).
%F A359244 G.f.: Sum_{k>0} x^(2*k)/(1 - x^(5*k-2)).
%F A359244 G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-3)).
%t A359244 a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359244 (PARI) a(n) = sumdiv(5*n-4, d, d%5==2);
%o A359244 (PARI) a(n) = sumdiv(5*n-4, d, d%5==3);
%o A359244 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(5*k-2)))))
%o A359244 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-3)))))
%Y A359244 Cf. A001877, A001878.
%K A359244 nonn,easy
%O A359244 1,8
%A A359244 _Seiichi Manyama_, Dec 22 2022