cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359262 a(n) is the largest number m such that prime(n)^m is in A359260.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 3, 1, 1, 5, 3, 1, 3, 1, 1, 1, 5, 3, 1, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 5, 3, 3, 1, 1, 1, 5, 1, 3, 1, 3, 9, 3, 1, 3, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 3, 1, 3, 1, 5, 3, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 3, 1, 9, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2022

Keywords

Comments

a(n) is the largest number m such that the arithmetic mean of {1, p, p^2, ..., p^k} is an integer for all k in 1..m.
Apparently, all the terms are of the form prime(k)-2 (A040976). Conjecture: The asymptotic density of the occurrences of prime(k)-2 is (1/s(k-1)-1/s(k)), where s(k) = A005867(k) = phi(prime(k)#), and prime(k)# is the k-th primorial number (A002110).
The sums of the first 10^k terms, for k = 1, 2, ..., are 15, 221, 2291, 23287, 233641, 2337007, 23379901, 233814475, 2338211029, 23382168187, ... . If the mentioned above conjecture is correct, then the asymptotic mean of this sequence is Sum_{k>=1} (prime(k)-2)*(1/s(k-1)-1/s(k)) = 2.33821872365981424748... .
Apparently, the indices of records after n = 1 occur at A000720(A073917(n)) (verified for the first 12 terms of A073917) with record values a(A000720(A073917(n))) = prime(n+1) - 2 (verified for the first 150 terms of A073917).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n], k = 1, r = s = 1}, While[Divisible[s, k], k++; r *= p; s += r]; k - 2]; Array[a, 100]
  • PARI
    a(n) = {my(p = prime(n), k = 1, r = s = 1); while(!(s%k), k++; r *= p; s += r); k - 2; }

Formula

a(n) >= 1 for n >= 2.
a(n) >= 3 iff prime(n) == 1 (mod 6) (prime(n) is in A002476).
Conjectures:
a(n) >= 5 iff prime(n) == 1 (mod 30) (prime(n) is in A132230).
a(n) >= 9 iff prime(n) == 1 (mod 210) (prime(n) is in A073102).
a(n) >= prime(k) - 2 iff prime(n) == 1 (mod A002110(k-1)).