cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359265 Product_{n>=1} (1 + a(n) * x^n) = 1 + Sum_{n>=1} n^3 * x^n.

This page as a plain text file.
%I A359265 #26 Dec 29 2022 09:17:16
%S A359265 1,8,19,45,-72,-224,-72,3465,1656,-4752,-31248,-440,62064,415008,
%T A359265 936432,6776793,-16454232,-24983784,74804904,468856296,236519784,
%U A359265 -2495390904,-8714625696,-8228470832,62274531168,155889061848,-47291852448,-1334769988176,-4304113760232
%N A359265 Product_{n>=1} (1 + a(n) * x^n) = 1 + Sum_{n>=1} n^3 * x^n.
%H A359265 Seiichi Manyama, <a href="/A359265/b359265.txt">Table of n, a(n) for n = 1..1000</a>
%p A359265 S:= 1 + x*(x^2 + 4*x + 1)/(x - 1)^4:
%p A359265 for n from 1 to 30 do
%p A359265   SS:= series(S,x,n+1);
%p A359265   A[n]:= coeff(SS,x,n);
%p A359265   S:= S/(1+A[n]*x^n);
%p A359265 od:
%p A359265 seq(A[i],i=1..30); # _Robert Israel_, Dec 28 2022
%Y A359265 Cf. A000578, A147559, A147654, A316083.
%K A359265 sign
%O A359265 1,2
%A A359265 _Seiichi Manyama_, Dec 28 2022