cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359269 Number of divisors of 5*n-2 of form 5*k+2.

This page as a plain text file.
%I A359269 #18 Aug 16 2023 02:27:25
%S A359269 0,1,0,1,0,2,0,1,0,2,0,1,1,2,0,1,0,2,0,2,0,3,0,1,0,2,1,1,0,2,1,1,0,4,
%T A359269 0,1,0,2,0,2,1,2,0,1,0,3,0,3,1,2,0,1,0,2,1,1,0,4,0,1,0,4,0,1,1,2,1,1,
%U A359269 1,3,0,1,0,2,0,4,0,2,0,1,0,4,1,2,1,2,0,1,0,4
%N A359269 Number of divisors of 5*n-2 of form 5*k+2.
%C A359269 Also number of divisors of 5*n-2 of form 5*k+4.
%H A359269 Seiichi Manyama, <a href="/A359269/b359269.txt">Table of n, a(n) for n = 1..10000</a>
%F A359269 a(n) = A001877(5*n-2) = A001899(5*n-2).
%F A359269 G.f.: Sum_{k>0} x^(2*k)/(1 - x^(5*k-1)).
%F A359269 G.f.: Sum_{k>0} x^(4*k-2)/(1 - x^(5*k-3)).
%t A359269 a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359269 (PARI) a(n) = sumdiv(5*n-2, d, d%5==2);
%o A359269 (PARI) a(n) = sumdiv(5*n-2, d, d%5==4);
%o A359269 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(5*k-1)))))
%o A359269 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(4*k-2)/(1-x^(5*k-3)))))
%Y A359269 Cf. A001877, A001899, A359236.
%K A359269 nonn,easy
%O A359269 1,6
%A A359269 _Seiichi Manyama_, Dec 23 2022