A359273 a(n) = least positive integer k such that (prime(n+k)-prime(n))/n is an integer.
1, 1, 2, 1, 6, 2, 4, 6, 4, 7, 5, 6, 6, 6, 13, 10, 14, 4, 23, 12, 16, 4, 42, 6, 20, 5, 10, 10, 10, 10, 23, 6, 24, 6, 37, 12, 38, 14, 40, 22, 151, 6, 16, 16, 46, 22, 60, 10, 49, 25, 65, 43, 16, 18, 18, 27, 19, 38, 56, 19, 144, 30, 21, 21, 21, 10, 42, 32, 66
Offset: 1
Keywords
Examples
a(5) = 6 because 5 divides 20, which is prime(5+6) - prime(5), and if 0 < k < 6, then 5 does not divide prime(5+k) - prime(5).
Programs
-
Maple
f:= proc(n) local p,k,q; p:= ithprime(n); q:= p; for k from 1 do q:= nextprime(q); if (q - p) mod n = 0 then return k fi; od end proc: map(f, [$1..100]); # Robert Israel, Jan 26 2023
-
Mathematica
p[n_] := Prime[n]; a[n_] := Select[Range[1000], IntegerQ[(p[n + #] - p[n])/n] &, 1] Flatten[Table[a[n], {n, 1, 130}]]