cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359280 Powerful numbers that are neither prime powers nor powers of squarefree composites.

This page as a plain text file.
%I A359280 #54 Feb 09 2025 11:21:08
%S A359280 72,108,144,200,288,324,392,400,432,500,576,648,675,784,800,864,968,
%T A359280 972,1125,1152,1323,1352,1372,1568,1600,1728,1800,1936,1944,2000,2025,
%U A359280 2304,2312,2500,2592,2700,2704,2888,2916,3087,3136,3200,3267,3456,3528,3600,3872,3888,3969
%N A359280 Powerful numbers that are neither prime powers nor powers of squarefree composites.
%C A359280 Numbers k such that omega(k) > 1 and for prime power factors p^e | k, multiplicities e > 1, yet the multiplicities are not equal.
%C A359280 Subset of A286708, which in turn is a subset of A361098, itself a subset of A126706, the sequence of numbers neither squarefree nor prime powers.
%C A359280 Since A001694 = Union({1}, A246547, A286708), this sequence is a subset of A001694.
%H A359280 Michael De Vlieger, <a href="/A359280/b359280.txt">Table of n, a(n) for n = 1..10000</a>
%H A359280 Michael De Vlieger, <a href="/A359280/a359280.png">Plot A001694(ym + x) at (x, y)</a> for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and both prime powers and those in A303606 in white.
%H A359280 Michael De Vlieger, <a href="/A359280/a359280_1.png">Plot A286708(n) at (x, y)</a> for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and those in A303606 in white.
%F A359280 This sequence is A286708 \ A303606.
%F A359280 Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) - 1 = 0.094962568855... . - _Amiram Eldar_, Dec 09 2023
%e A359280 Let b(n) = A286708(n).
%e A359280 b(1) = 36 is not in the sequence since rad(36) = A007947(36) = 6, and 36 = 6^2.
%e A359280 b(2) = a(1) = 72 since 72 is not a perfect power of rad(72).
%e A359280 b(3) = 100 = rad(100)^2 = 10^2, so it is not in the sequence.
%e A359280 b(4) = a(2) = 108, since 108 is not a perfect power of rad(108) = 6.
%e A359280 b(5) = a(3) = 144, since 144 is not a perfect power of rad(144) = 6.
%e A359280 b(6) = 196 is not in the sequence since 196 = rad(196)^2 = 14^2, etc.
%t A359280 nn = 5000; s = Rest@ Select[Union@ Flatten@Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ]; Select[s, !SameQ @@ FactorInteger[#][[All, -1]] &]
%o A359280 (Python)
%o A359280 from math import isqrt
%o A359280 from sympy import mobius, integer_nthroot
%o A359280 def A359280(n):
%o A359280     def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o A359280     def bisection(f,kmin=0,kmax=1):
%o A359280         while f(kmax) > kmax: kmax <<= 1
%o A359280         kmin = kmax >> 1
%o A359280         while kmax-kmin > 1:
%o A359280             kmid = kmax+kmin>>1
%o A359280             if f(kmid) <= kmid:
%o A359280                 kmax = kmid
%o A359280             else:
%o A359280                 kmin = kmid
%o A359280         return kmax
%o A359280     def f(x):
%o A359280         j = isqrt(x)
%o A359280         c, l = n+x+3-(y:=x.bit_length())+squarefreepi(j)+sum(squarefreepi(integer_nthroot(x, k)[0]) for k in range(4, y)), 0
%o A359280         while j>1:
%o A359280             k2 = integer_nthroot(x//j**2,3)[0]+1
%o A359280             w = squarefreepi(k2-1)
%o A359280             c -= j*(w-l)
%o A359280             l, j = w, isqrt(x//k2**3)
%o A359280         return c+l
%o A359280     return bisection(f,n,n) # _Chai Wah Wu_, Feb 09 2025
%Y A359280 Cf. A001694, A007947, A082695, A126706, A286708, A303606, A361098.
%K A359280 nonn
%O A359280 1,1
%A A359280 _Michael De Vlieger_, Aug 01 2023