This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359283 #13 Dec 27 2022 16:53:55 %S A359283 4,6,2,3,0,3,7,1,1,5,3,7,3,2,1,0,7,7,1,8,2,0,3,9,6,2,8,5,8,8,2,7,7,4, %T A359283 4,0,9,6,1,0,2,6,0,3,7,0,4,8,4,0,7,5,6,2,2,7,0,1,3,0,0,6,0,2,5,6,7,8, %U A359283 2,3,3,7,7,0,2,4,0,9,8,4,4,7,7,3,4,1,7,5,4,6,1,0,5,4,2,3,3,8,6,1,8 %N A359283 Decimal expansion of Integral_{x = 1..oo} 1/x^(x^2) dx. %C A359283 For a, b nonnegative integers, the alternating divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx. %H A359283 Peter Bala, <a href="/A245637/a245637.pdf">Borel summation of a family of divergent series</a> %H A359283 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sophomore%27s_dream">Sophomore's Dream</a> %F A359283 Equals Integral_{x = 1..oo} 1/(2*x - 1)^x dx. %F A359283 Equals the Borel sum of the alternating divergent series Sum_{n >= 0} (-1)^n*(2*n + 1)^n. Compare with the alternating convergent series Sum_{n >= 1} (-1)^(n+1)/(2*n - 1)^n = Integral_{x = 0..1} x^(x^2) dx. See A253299. %e A359283 0.46230371153732107718203962858827744096102603704840... %p A359283 evalf(int(1/x^(x^2), x = 1..infinity), 100); %t A359283 NIntegrate[1/x^(x^2), {x, 1, Infinity}, WorkingPrecision -> 105] // RealDigits // First %Y A359283 Cf. A245637, A253299, A359282, A359284, A359285, A359286. %K A359283 nonn,cons,easy %O A359283 0,1 %A A359283 _Peter Bala_, Dec 24 2022