This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359287 #18 Aug 16 2023 02:27:18 %S A359287 1,0,2,0,2,0,2,0,2,1,2,0,2,0,2,0,4,0,2,0,2,0,2,2,2,0,2,0,3,0,4,0,2,0, %T A359287 2,0,2,2,2,0,4,0,2,0,4,0,2,0,2,0,2,2,4,0,2,0,2,1,4,0,2,0,2,0,4,2,2,0, %U A359287 2,0,2,0,4,0,4,0,4,0,2,2,2,0,2,0,2,0,4,0,4,0 %N A359287 Number of divisors of 5*n-1 of form 5*k+2. %H A359287 Seiichi Manyama, <a href="/A359287/b359287.txt">Table of n, a(n) for n = 1..10000</a> %F A359287 a(n) = A001877(5*n-1). %F A359287 G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-3)). %t A359287 a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *) %o A359287 (PARI) a(n) = sumdiv(5*n-1, d, d%5==2); %o A359287 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-3)))) %Y A359287 Cf. A001877. %Y A359287 Cf. A359233, A359288. %Y A359287 Cf. A359237, A359244, A359269. %K A359287 nonn,easy %O A359287 1,3 %A A359287 _Seiichi Manyama_, Dec 24 2022