cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359288 Number of divisors of 5*n-1 of form 5*k+3.

This page as a plain text file.
%I A359288 #18 Aug 16 2023 02:27:15
%S A359288 0,1,0,0,2,0,0,2,0,0,2,0,1,2,0,0,2,0,0,2,2,0,2,0,0,2,0,0,4,0,0,2,0,1,
%T A359288 2,0,2,2,0,0,2,0,0,2,2,0,4,0,0,2,0,0,4,0,0,2,0,0,2,2,2,2,0,0,3,0,0,2,
%U A359288 2,0,2,0,2,2,0,0,4,0,0,2,0,0,4,0,2,4,0,0,2,0
%N A359288 Number of divisors of 5*n-1 of form 5*k+3.
%H A359288 Seiichi Manyama, <a href="/A359288/b359288.txt">Table of n, a(n) for n = 1..10000</a>
%F A359288 a(n) = A001878(5*n-1).
%F A359288 G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-2)).
%t A359288 a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 3 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359288 (PARI) a(n) = sumdiv(5*n-1, d, d%5==3);
%o A359288 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-2)))))
%Y A359288 Cf. A001878.
%Y A359288 Cf. A359233, A359287.
%Y A359288 Cf. A359236, A359244, A359270.
%K A359288 nonn,easy
%O A359288 1,5
%A A359288 _Seiichi Manyama_, Dec 24 2022