This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359289 #19 Aug 16 2023 02:26:45 %S A359289 1,1,2,1,2,1,2,2,2,1,2,1,3,2,2,1,2,2,2,2,2,1,4,1,2,2,2,2,2,1,2,3,4,1, %T A359289 2,1,2,3,2,1,3,1,4,2,2,2,2,2,2,3,2,1,4,1,2,2,2,2,4,2,2,2,4,1,2,1,2,4, %U A359289 2,1,2,2,4,3,2,1,4,2,2,2,2,1,4,1,3,3,2,3,2,1 %N A359289 Number of divisors of 4*n-2 of form 4*k+1. %F A359289 a(n) = A001826(4*n-2). %F A359289 G.f.: Sum_{k>0} x^k/(1 - x^(4*k-2)). %F A359289 G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(4*k-3)). %t A359289 a[n_] := DivisorSum[4*n-2, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *) %o A359289 (PARI) a(n) = sumdiv(4*n-2, d, d%4==1); %o A359289 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-2)))) %o A359289 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(4*k-3)))) %Y A359289 Cf. A001826, A078703, A359227. %K A359289 nonn,easy %O A359289 1,3 %A A359289 _Seiichi Manyama_, Dec 24 2022