cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359290 Number of divisors of 4*n-2 of form 4*k+3.

This page as a plain text file.
%I A359290 #23 Aug 16 2023 02:26:48
%S A359290 0,1,0,1,1,1,0,2,0,1,2,1,0,2,0,1,2,2,0,2,0,1,2,1,1,2,0,2,2,1,0,3,0,1,
%T A359290 2,1,0,3,2,1,2,1,0,2,0,2,2,2,0,3,0,1,4,1,0,2,0,2,2,2,1,2,0,1,2,1,2,4,
%U A359290 0,1,2,2,0,3,0,1,2,2,0,2,2,1,4,1,0,3,0,3,2,1
%N A359290 Number of divisors of 4*n-2 of form 4*k+3.
%H A359290 Seiichi Manyama, <a href="/A359290/b359290.txt">Table of n, a(n) for n = 1..10000</a>
%F A359290 a(n) = A001842(4*n-2).
%F A359290 G.f.: Sum_{k>0} x^(2*k)/(1 - x^(4*k-1)).
%F A359290 G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(4*k-2)).
%t A359290 Table[Count[Divisors[4 n-2],_?(IntegerQ[(#-3)/4]&)],{n,100}] (* _Harvey P. Dale_, May 09 2023 *)
%t A359290 a[n_] := DivisorSum[4*n-2, 1 &, Mod[#, 4] == 3 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359290 (PARI) a(n) = sumdiv(4*n-2, d, d%4==3);
%o A359290 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(4*k-1)))))
%o A359290 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(4*k-2)))))
%Y A359290 Cf. A001842, A078703, A359240.
%K A359290 nonn
%O A359290 1,8
%A A359290 _Seiichi Manyama_, Dec 24 2022