This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359299 #9 Jan 08 2023 11:44:20 %S A359299 1,2,4,3,6,9,5,10,15,8,7,12,21,14,25,11,16,27,20,33,24,13,18,35,26,49, %T A359299 32,91,17,22,39,34,55,48,121,90,19,28,45,38,63,54,143,120,119,23,30, %U A359299 51,44,75,62,185,142,141,118,29,36,57,50,85,74,205,184,183 %N A359299 Array T(n, k) read by antidiagonals: for n >= 0 and k >= 0, row n lists the positive integers m such that m + k is prime or 1, and m + h, for 0 <= h < k, is not prime. %C A359299 Essentially, for n >= 0, row n lists the numbers whose distance down to the nearest prime is n. %e A359299 Corner: %e A359299 1 2 3 5 7 11 13 17 19 23 29 %e A359299 4 6 10 12 16 18 22 28 30 36 40 %e A359299 9 15 21 27 35 39 45 51 57 65 69 %e A359299 8 14 20 26 34 38 44 50 56 64 68 %e A359299 25 33 49 55 63 75 85 93 123 133 145 %e A359299 24 32 48 54 62 74 84 92 122 132 144 %e A359299 Row 0 includes 19 because 19 is prime, and 19 - 19 = 0. %e A359299 Row 1 includes 10 because the nearest prime up from 10 is 11, and 11 - 10 = 1. %t A359299 rows = 15; %t A359299 row[0] = Join[{1}, Map[Prime, Range[250]]]; Table[ %t A359299 row[z] = Map[#[[1]] &, Select[Map[{#, Apply[And, %t A359299 Join[{MemberQ[row[0], # + z]}, Table[! MemberQ[row[0], # + k], %t A359299 {k, 0, z - 1}]]]} &, %t A359299 Range[Max[row[z - 1]]]], #[[2]] &]], {z, rows}]; %t A359299 Table[row[z], {z, 0, rows}] // ColumnForm (* A359299 array *) %t A359299 t[n_, k_] := row[n - 1][[k]] %t A359299 u = Table[t[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // %t A359299 Flatten (* A359299 sequence *) %t A359299 (* _Peter J. C. Moses_ Dec 18 2022 *) %Y A359299 Cf. A000040, A008578, A359298, A359300. %K A359299 nonn,tabl %O A359299 1,2 %A A359299 _Clark Kimberling_, Jan 01 2023