cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359306 Number of divisors of 6*n-2 of form 6*k+1.

This page as a plain text file.
%I A359306 #16 Aug 16 2023 02:26:51
%S A359306 1,1,1,1,2,1,1,1,2,1,1,2,2,1,1,1,2,1,2,1,2,2,1,1,2,2,1,1,2,1,1,2,3,1,
%T A359306 2,1,2,1,1,2,2,2,1,1,2,1,2,2,2,1,2,2,2,2,1,1,2,1,1,1,4,2,1,1,2,1,2,2,
%U A359306 2,2,1,2,2,2,2,1,2,1,1,1,2,3,2,1,2,1,2,1,4,1
%N A359306 Number of divisors of 6*n-2 of form 6*k+1.
%H A359306 Seiichi Manyama, <a href="/A359306/b359306.txt">Table of n, a(n) for n = 1..10000</a>
%F A359306 a(n) = A279060(6*n-2).
%F A359306 G.f.: Sum_{k>0} x^k/(1 - x^(6*k-2)).
%F A359306 G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(6*k-5)).
%t A359306 a[n_] := DivisorSum[6*n-2, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359306 (PARI) a(n) = sumdiv(6*n-2, d, d%6==1);
%o A359306 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-2))))
%o A359306 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(4*k-3)/(1-x^(6*k-5))))
%Y A359306 Cf. A279060, A359305, A359307, A359308, A359309.
%K A359306 nonn,easy
%O A359306 1,5
%A A359306 _Seiichi Manyama_, Dec 25 2022