This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359307 #14 Aug 16 2023 02:26:54 %S A359307 1,1,1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,2,1,2,1,1,3,1,1,2,2,1,2,2,2,2, %T A359307 1,1,2,2,2,2,1,1,2,1,1,4,2,2,2,1,1,2,2,1,2,2,1,2,2,2,2,1,2,2,2,1,4,1, %U A359307 1,2,1,2,2,3,1,2,1,2,2,1,2,2,2,1,3,2,1,4,1,1 %N A359307 Number of divisors of 6*n-3 of form 6*k+1. %H A359307 Seiichi Manyama, <a href="/A359307/b359307.txt">Table of n, a(n) for n = 1..10000</a> %F A359307 a(n) = A279060(6*n-3). %F A359307 G.f.: Sum_{k>0} x^k/(1 - x^(6*k-3)). %F A359307 G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(6*k-5)). %t A359307 a[n_] := DivisorSum[6*n-3, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *) %o A359307 (PARI) a(n) = sumdiv(6*n-3, d, d%6==1); %o A359307 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-3)))) %o A359307 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(6*k-5)))) %Y A359307 Cf. A279060, A359305, A359306, A359308, A359309. %K A359307 nonn,easy %O A359307 1,4 %A A359307 _Seiichi Manyama_, Dec 25 2022