cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359308 Number of divisors of 6*n-4 of form 6*k+1.

This page as a plain text file.
%I A359308 #15 Aug 16 2023 02:26:57
%S A359308 1,1,2,1,2,1,2,1,2,2,2,1,2,1,2,1,3,2,2,1,2,1,2,2,2,2,2,1,2,1,4,1,2,2,
%T A359308 2,1,2,2,2,1,2,2,2,2,4,1,2,1,2,2,2,2,2,1,2,1,3,2,4,1,2,1,2,2,2,3,2,1,
%U A359308 2,2,2,1,4,2,2,1,2,1,2,2,2,2,4,2,2,1,4,1,2,2
%N A359308 Number of divisors of 6*n-4 of form 6*k+1.
%H A359308 Seiichi Manyama, <a href="/A359308/b359308.txt">Table of n, a(n) for n = 1..10000</a>
%F A359308 a(n) = A279060(6*n-4).
%F A359308 G.f.: Sum_{k>0} x^k/(1 - x^(6*k-4)).
%F A359308 G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(6*k-5)).
%t A359308 a[n_] := DivisorSum[6*n-4, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359308 (PARI) a(n) = sumdiv(6*n-4, d, d%6==1);
%o A359308 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-4))))
%o A359308 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(6*k-5))))
%Y A359308 Cf. A279060, A359305, A359306, A359307, A359309.
%K A359308 nonn,easy
%O A359308 1,3
%A A359308 _Seiichi Manyama_, Dec 25 2022