cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359309 Number of divisors of 6*n-5 of form 6*k+1.

This page as a plain text file.
%I A359309 #15 Aug 16 2023 02:27:01
%S A359309 1,2,2,2,2,2,2,2,3,2,2,2,2,2,2,4,2,2,2,2,2,2,4,2,2,2,2,2,3,4,2,2,2,2,
%T A359309 2,2,4,2,2,2,2,4,2,4,2,2,2,2,2,2,4,2,2,2,4,2,2,4,2,2,3,2,2,2,4,2,2,4,
%U A359309 2,2,2,4,2,2,2,2,2,2,4,4,4,2,2,2,2,4,2,2,2,2
%N A359309 Number of divisors of 6*n-5 of form 6*k+1.
%H A359309 Seiichi Manyama, <a href="/A359309/b359309.txt">Table of n, a(n) for n = 1..10000</a>
%F A359309 a(n) = A279060(6*n-5).
%F A359309 G.f.: Sum_{k>0} x^k/(1 - x^(6*k-5)).
%t A359309 a[n_] := DivisorSum[6*n-5, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *)
%o A359309 (PARI) a(n) = sumdiv(6*n-5, d, d%6==1);
%o A359309 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-5))))
%Y A359309 Cf. A279060, A359305, A359306, A359307, A359308.
%K A359309 nonn,easy
%O A359309 1,2
%A A359309 _Seiichi Manyama_, Dec 25 2022