This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359324 #18 Aug 14 2023 01:59:23 %S A359324 0,1,0,1,0,1,1,1,0,1,0,2,0,1,1,1,1,1,0,1,0,2,1,1,0,2,1,1,0,1,1,2,0,1, %T A359324 0,1,2,1,1,2,0,2,0,1,0,1,2,2,0,1,0,2,0,2,1,1,2,1,1,1,0,2,1,1,0,1,1,2, %U A359324 0,2,1,2,0,2,0,1,2,1,1,1,1,3,0,1,0,1,2,1,0,1 %N A359324 Number of divisors of 6*n-2 of form 6*k+5. %H A359324 Seiichi Manyama, <a href="/A359324/b359324.txt">Table of n, a(n) for n = 1..10000</a> %F A359324 a(n) = A319995(6*n-2). %F A359324 G.f.: Sum_{k>0} x^(2*k)/(1 - x^(6*k-1)). %F A359324 G.f.: Sum_{k>0} x^(5*k-3)/(1 - x^(6*k-4)). %t A359324 a[n_] := DivisorSum[6*n-2, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* _Amiram Eldar_, Aug 14 2023 *) %o A359324 (PARI) a(n) = sumdiv(6*n-2, d, d%6==5); %o A359324 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(6*k-1))))) %o A359324 (PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(5*k-3)/(1-x^(6*k-4))))) %Y A359324 Cf. A319995, A359305, A359325, A359326, A359327. %Y A359324 Cf. A359239, A359269, A359290. %K A359324 nonn,easy %O A359324 1,12 %A A359324 _Seiichi Manyama_, Dec 25 2022