This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359325 #16 Aug 16 2023 02:27:04 %S A359325 0,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,1,2,0,0,1,0,1,1,0,1,1,2,0,1,0,0,2,0, %T A359325 1,1,0,1,2,0,0,1,2,1,1,0,0,2,0,1,1,0,2,1,0,0,1,2,0,2,1,1,2,0,0,1,0,1, %U A359325 1,0,1,2,2,0,1,0,1,2,0,1,2,0,2,1,0,0,1,2,1,1 %N A359325 Number of divisors of 6*n-3 of form 6*k+5. %H A359325 Seiichi Manyama, <a href="/A359325/b359325.txt">Table of n, a(n) for n = 1..10000</a> %F A359325 a(n) = A319995(6*n-3). %F A359325 G.f.: Sum_{k>0} x^(3*k)/(1 - x^(6*k-1)). %F A359325 G.f.: Sum_{k>0} x^(5*k-2)/(1 - x^(6*k-3)). %t A359325 a[n_] := DivisorSum[6*n-3, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* _Amiram Eldar_, Aug 16 2023 *) %o A359325 (PARI) a(n) = sumdiv(6*n-3, d, d%6==5); %o A359325 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^(6*k-1))))) %o A359325 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(5*k-2)/(1-x^(6*k-3))))) %Y A359325 Cf. A319995, A359305, A359324, A359326, A359327. %K A359325 nonn,easy %O A359325 1,18 %A A359325 _Seiichi Manyama_, Dec 25 2022